

Open Innovation Test Bed

Biobased plastic parts by 3D printing

Policy and dissemination event Brussels, 26th January 2024 Marta Redrado (Aitiip)

Contents

- 1. Objective
- 2. General overview
- 3. Fibre preparation
- 4. Compounding \rightarrow Formulations
- 5. Automotive parts
- 6. Personalised inner shoe soles
- 7. Conclusions

OBJECTIVE

Use **bioplastics and natural fibres**, to tailor biobased materials with properties and functionalities that equal or outperform their fossil counterparts at competitive prices by **using 3D printing technology**.

Automotive Components & Personalised inner shoe soles

- Goal of degumming removing of substances gluing elementary fibres together to make possible to obtain micro-size diameter of the fibres.
- > Goal of **silanization** improvement of adhesion between fibres and polymer matrixes.
- ➢ Goal of grinding obtaining of micro-size length of the fibres
- ➢ Goal of wringing to improve efficiency of microfibers purification.
- Capacity of the pilot line is approximately 20kg/day

Automotive Components

Personalised inner shoe soles

Processing – Filament Production

AUTOMOTIVE PARTS

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement N°952972

Fiat 500 dashboard fascia on driver side: Aesthetical trim of the instrumental panel assembly

Front view

Rear view

CRF

3D Printing Demonstrators - Coating

10 squares (10cm x 10cm) \rightarrow Printed for validation

- 5 non-coated
- 5 coated with ORMOCER developed in the project by **Fraunhofer**

Antibacterial properties

Validation of automotive parts

Tests performed:

- ✓ Fluid Resistance Test
- ✓ Xenon Exposure Test
- ✓ Olfactory Test
- ✓ Cold Impact Test
- ✓ Thermal Cycle Test

PERSONALISED INNER SHOE SOLES

Personalised inner shoe soles:

DESIGN MODIFICATIONS - ITERATIONS

The initial lattice structure did not provide adequate support, particularly in the heel area, and resulted in instability during walking.

Entire insole surface joined to prevent the formation of redundant walls generated by the FDM method

Final design

3D Printing Demonstrators - Coating

bioORMOCER prepared by **Fraunhofer**

Coated inner shoe soles

Plasma pretreatment

Spray coating

UV post-treatment

Antibacterial properties

Upper design and union

Design of the **upper of the shoe**, choice of colours and design to be attached to the shoe.

Final prototype

Validation of personalised inner shoe soles

Tests performed:

 \checkmark Test of validation with instrumented insoles in

4 subjects and Lyfetime test

Conditions:

- **1.** Generic shoe without personalised insole
- 2. Generic shoe with personalised Podoactiva insole
- 3. INNPRESSME Custom footwear

Measured difference between:

- ✓ Mean pressures
- ✓ Maximum peaks of pressures
- ✓ Total contact surface (area of contact)

Automotive parts

The results obtained has given a <u>good</u> and positive confidence on the <u>applicability of this material</u> to produce an interior automotive component.

Personalised inner shoe soles

The <u>material</u> developed for the <u>project meet the specifications and</u> <u>technical requirements</u> of specialized podiatrists. Functionally, the sole has been observed to meet the requirements of a therapeutic insole and has demonstrated resistance over a high number of cycles, indicating durability.

Open Innovation Test Bed

Thank you!

Marta Redrado Notivoli Aitiip marta.redrado@aitiip.com

www.inn-pressme.eu

linkedIn.com/company/inn-pressme

(in)

twitter.com/inn-pressme