

Novel recyclable/reusable bioplastics in circular economy Plastic congress S³

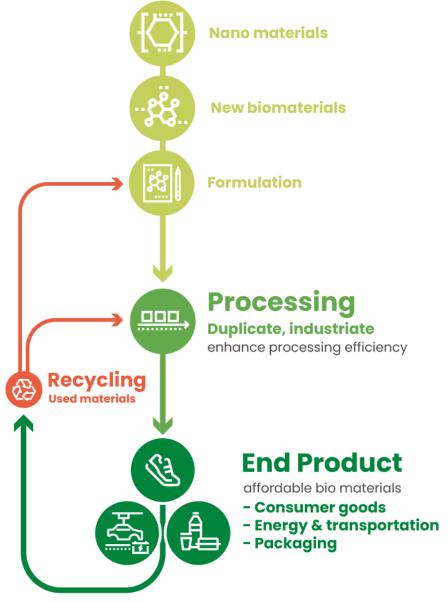
Ulla Forsström, Principal Scientist at VTT Research Centre Finland and coordinator of INN-PRESSME

The Project

INN-PRESSME aims at

TRL 4-5 to 7

developing & implementing a sustainable Open Innovation


Test Bed (OITB) to support

European companies to scale

up their nano-enabled

biomaterials & processes from

Materials

PRESSME Facts & Figures

Developing materials & solutions for industry to replace fossil resources with sustainable, efficient, & cost-competitive bio-based materials.

Led by VTT from Finland

Ulla Forsström (coordinator)

European Union H2020 Funding:

16.338.121,95 €

Start:

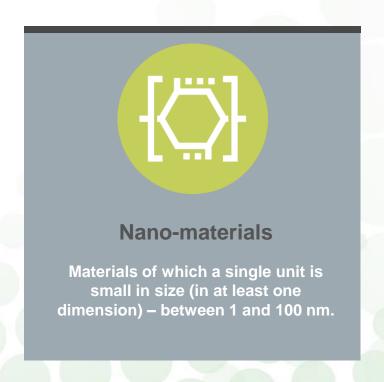
1st

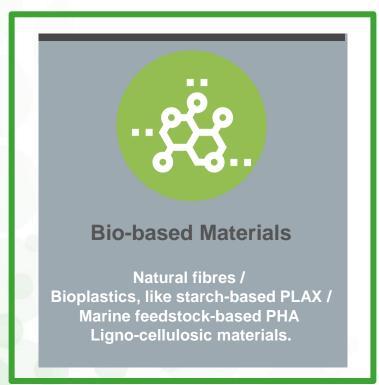
January 2021

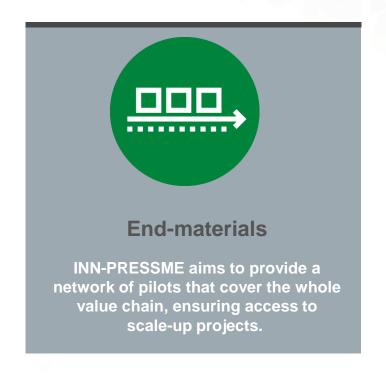
End:

31st

January 2025






Sustainable alternatives

The use of **bio-based materials** from biological sources (e.g. plants) as **sustainable alternatives** to fossil-based counterparts.

> 16 Pilot lines as open access services

Test cases – validation of the 16 Pilot Lines

A set of **9 test-cases** will be used to validate the improved materials' performances & functionalities of the solutions developed by INN-PRESSME at real scale testing, & demonstrate the expected impacts, mainly those related to circularity.

PRESSME VTT's Process Chemistry pilots — PLAX, etc

- Polymerization reactors for production of bio-based polymers
- Reactors for preparation of polymer dispersions and formulations
- Characterization of synthesized polymers and dispersions
- Online measurements and data collection to support production, process control and results processing

- Scale-up possibilities for polymers and dispersions
 - Vacuum shovel reactors available from 10 L to 600 L
 - Temperature up to 200 °C
 - Vacuum up to 10-20 mbar
 - Ability to mix high viscous products

Lödige DVT 10

Drais TD 250 E

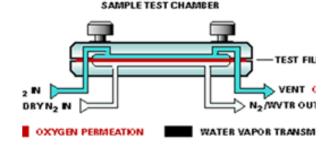
Lödige VTA 600

PRESSME VTT's Surface treatment pilot line SutCo

- Started in 2008, relocated 2021 VTT Bioruukki
- Horizontal bucket scale pilot up to 550 mm & 1...90 m/min
- Modular construction allows addition of tunable components
- Small coating/material demand for trials
- R2R materials: fibre-based materials, nonwovens or plastic webs
- Several pretreatment, coating and drying options

Converting, characterization, recyclability testing

to be reusable in production of fibre-based packages


circular economy

Converting

- Speed
- Heat sealing temperature

WVTR/OTR Test

Characterization

- Barrier testing
- Strength properties
- Recyclability and Biodegradation

- Filling
- Shelf life

To be collected with packaging materials and reused for production of corrugated board.

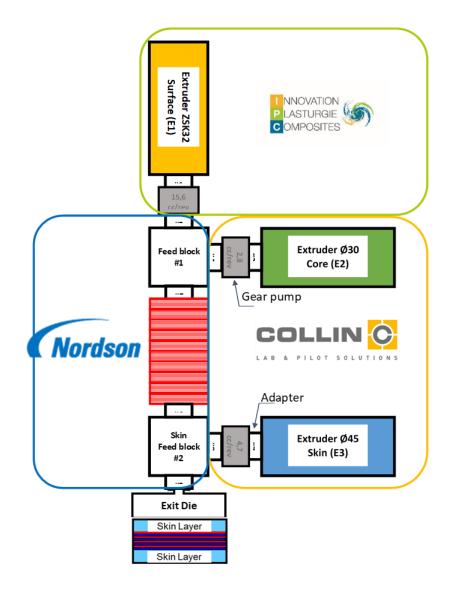
Polymaris Biotechnology: PHA Fermentation & Spray-drying

Current status for spray drying

- > Adjustement of parameters
- Better quality of powder
 - Less humidity than before
- > Yield increase
 - 50-60% to 85-90%
- > Better quantity of powder per hour

Next steps for spray drying will be

- Increase of the yield
- Automation of powder recovery



PRESSME IPC's MULTINANO extrusion

- > Layer multiplying elements allow to increase the number of layers
- > A single film with thousands of layers with nanorange thicknesses high gas barrier properties
- > Multinano-layered Film extrusion of width up to 600 mm & thicknesses from 50-100 µm:
 - Nordson LMT technology and flat die
 - > 750 mm width and deckling system
 - And chill-roll
 - Roll diameter 250 mm & width 800 mm
 - > Speed 1-50 m/min

Biobased tubes for cosmetics (IPC)

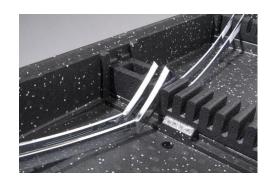
The new environmentally friendly design – recyclable in production of fibre-based packages or as plastic composites – will be **3 laminated layers**:

- > an outer bio-based plastic film
- > a central paper sheet
- and an inner multi-nanolayered mono-material film providing gas barrier properties
- To be **recycled and material used** as fibre-based packages or plastic composites
- With good gas barrier properties
- With highly aesthetic packaging (self-cleaning, gloss effect,..)

FhG-ICT Foam extrusion for beads/packaging

Pilot line consists of 3 main process technologies for the development of biobased particle foams (PLA & PHA):

- Particle foam extrusion incl. underwater pelletized
- Steam based pre-foamer
- Steam-chest moulding machine to produce reusable and recyclable biobased packaging solution



Demonstrator - reusable bio-based boxes

- Bio-based reinforced particle foams are tested in a steam chest moulding process to produce logistic boxes in an industrial environment
- > Resulting materials will be characterised, focusing on the crucial properties of the product: mechanical performance, density, shock absorption, and abrasion resistance
- Mechanical recycling of bioplastics

13

Other OITB services

Designing products to be more sustainable, assessing life cycle & life cycle costs, testing recyclability & biodegradability, studying nanosafety

Improve the sustainability by following ecodesign approaches

Life cycle assessment (LCA) to identify & analyse the environmental aspects & impacts

Cost evaluation, for wider implications of technology selection

Analysing mechanical recycling or organic recycling of test cases

Ensure & guarantee nanosafety for all the developed products

Produce a specific Roadmap to define the end of life (EoL) options of all products

Scaling up services in 2023 through open calls

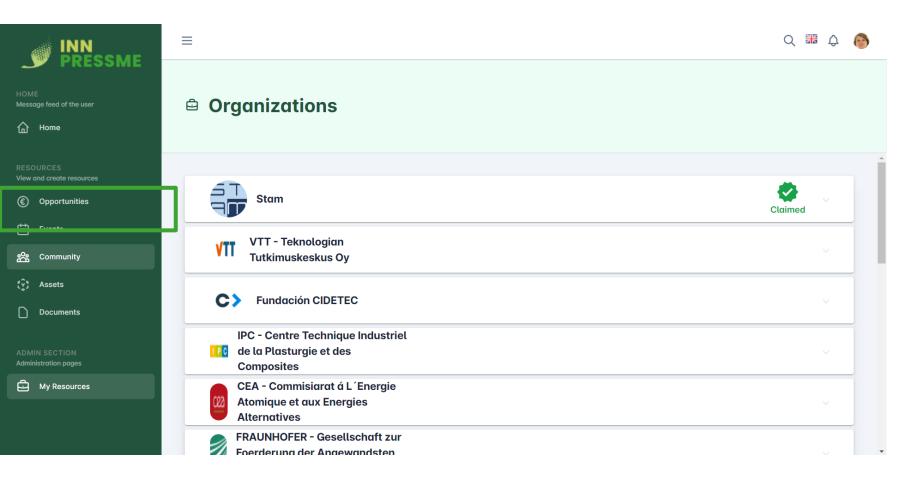
Open call opens in Fall 2022.....

Open Innovation Test Bed

- Developing, testing & upscaling of nanotechnology & advanced materials in industrial environments
- Bringing nanotechnologies & materials from validation in a laboratory (TRL 4) to prototypes in industrial environments (TRL 7)

- Upgrading existing / supporting setting of new public & private test beds, pilot lines & demonstrators
- Open calls for additional partners starting in 2023
- Managed by Single Entry Point (SEP) rules to be defined along 2022

16


Open calls

- > Supporting companies in developing & testing novel nano-enabled biomaterials
- ➤ Up to 15-18 companies may receive subsidised access to the INN-PRESSME OITB piloting services
- > 1.6 M € overall budget for the validation with new test cases
- ➤ Call is open mainly for SMEs and industrial partners targeting for packaging, energy/transport and other consumer products
- > Eligible countries: EU Member States & associated countries
- ➤ Open from Autumn 2022 to Autumn 2023 and applicants can apply anytime through our Digital Platform
- > Submitted proposals will be evaluated, first deadline in January 2023

Services applied through opportunities

A **Digital Platform** has been developed to manage project assets (pilot lines, services, etc.) It will be adapted to manage:

- > the Open Calls, during the project
- > the interactions between the SEP, service providers and customers, after the end of the project

From Lab to Industry to Market

Thank you!

Contact

Ulla Forsström

VTT

Ulla.Forsstrom@vtt.fi

+358 40 8202191

